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1. Background
The maritime transport sector must face two significant challenges: 

the ecological transformation helping to comply with international 
agreements to reduce emissions and the digital transformation derived 
from the development of Industry 4.0. In both cases, maintenance 
management can play a crucial role. 

Regarding the first of them, maritime transport was responsible for 
more than 2.89% (1,076 “million tonnes”) of the world’s total green-
house gas emissions in 2018, but it will continue to increase in the 
future due to the globalization of markets and to the growth of interna-
tional trade [18]. In maritime transport, components installed on ships 
are subject to hours of operation where maintenance interventions 
are interspersed to ensure the desired operating condition or restore 
it to that condition in case of failure. The maintenance manager must 
ensure that their equipment provides optimal system reliability, avail-
ability and security values, keeping maintenance costs as low as pos-
sible to help maintain profitability for the shipowner’s business [2]. 

One of the ways to reduce greenhouse gas emissions and other polluting gases caused by 
ships is to improve their maintenance operations through their life cycle. The maintenance 
manager usually does not modify the preventive intervals that the equipment manufacturer 
has designed to reduce the failure. Conditions of use and maintenance often change from de-
sign conditions. In these cases, continuing using the manufacturer's preventive intervals can 
lead to non-optimal management situations. This article proposes a new method to calculate 
the preventive interval when the hours of failure of the assets are unavailable. Two scenarios 
were created to test the effectiveness and usefulness of this new method, one without the 
failure hours and the other with the failure hours corresponding to a bypass valve installed in 
the engine of a maritime transport surveillance vessel. In an easy and fast way, the proposed 
method allows the maintenance manager to calculate the preventive interval of equipment 
that does not have installed an instrument for measuring operating hours installed.
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Therefore, any improvement in the maintenance of ships will contrib-
ute to reducing their emissions of pollutants and greenhouse gases.  

Moreover, as in other economic sectors, the current digital trans-
formation is changing how maintenance is managed [38], [32]. New 
maintenance strategies are increasing the reliability of assets during 
their lifecycle, reducing the frequency of preventive maintenance [9]. 
Maintenance is key to the development of Industry 4.0 [7]. The mas-
sive use of intelligent sensors allows an increasing amount of data 
to be obtained, which must be analysed efficiently and effectively to 
support decision-making and increasingly complex technological sys-
tems management [30]. 

Focusing now on the case of ship maintenance, sometimes, the 
maintenance manager finds himself with assets that suffer repetitive 
failures even when the maintenance strategy set by the manufacturer 
has been followed. In these cases, the operating and maintenance con-
ditions of these assets probably differ from the conditions for which 
they were designed. The modification of the maintenance intervals 
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according to each asset’s particular conditions of use must be dealt 
with by the person in charge of maintenance [45]. Available informa-
tion is an essential factor to consider. To make an accurate analysis it 
is not only necessary to know the number of failures over time, and 
the time at which failures occur. It is also necessary to consider other 
factors, such as the number of cycles of preventive interventions per-
formed, or the product usage that characterise the ageing of the asset. 
Recently, methods using this information have been proposed, based 
on collected parameters and machine learning. However, when this 
data is not available, only the number of failures that have occurred in 
a time interval, we are faced a different scenario [20, 21].

This work shows how to optimize the periodic preventive mainte-
nance interval of a ship engine exhaust component when the available 
information on the failure mode understudy is minimal. This kind of 
problem with a scarcity of data is a more common type of problem 
than one might think in the professional practice of maintenance en-
gineers in many facilities, equipment and fleets of land or sea trans-
port. Despite the current proliferation of sensors in companies, there 
are situations, especially in small companies and industries, where, 
for economic or other reasons, they do not record sufficient historical 
failure data on the assets they own, so they must manage the mainte-
nance of those assets and save the maintenance costs with little or no 
data, beyond that provided by their manufacturers. 

There are not so many studies that advise maintenance engineers 
on what maintenance interval to adopt when there is very little his-
torical data on equipment failures. They need to figure out how to 
predict when the next failure will occur and how it will occur. This 
challenge is more difficult when there is no historical failure data. In 
other words, they still need to know how to proceed with very little 
data regarding asset failures in the data-driven methods era. However, 
the scientific literature on how to address this problem is scarcer than 
would be desirable, so this paper responds to that gap.

A sample of recent work is present below, which has proposed 
mathematical models to address situations with incomplete data. Valis 
et al. [40] present new single and multiple error state-space models 
to model and predict the reliability of water mains from patchy and 
sparse failure data. Nobakhti et al. [27] propose a hybrid approach us-
ing fault tree analysis and the Mamdani fuzzy inference to obtain the 
reliability response as a function of a few frequently operating pres-
sure and temperature, which avoid the lack of historical data. Andrze-
jczak et al. [4] study the problem of the lack of data in new technical 
facilities, presenting a method, with a Bayesian approach, for estimat-
ing the probability distribution of the lifetime for these assets based 
on expert assessments of three parameters characterizing the expected 
lifetime of these assets. Furthermore, they show some practical ap-
plications using the Weibull distribution. Yun-Fei et al. [26] establish 
a hidden semi-Markovian model that clusters the incomplete degrada-
tion data. The model allows predictions for the remaining useful life 
and is applied to bearing failure data. Zhang et al. [47] developed a 
Markov chain Monte Carlo method to perform multiple imputations 
for incomplete correlated ordinal data using the multivariate probit 
model and simulations to compare the performance of their method 
with other methods for various missing data scenarios. Li et al. [23] 
tackle fault detection and diagnosis from incomplete data. As a pre-
liminary step, they propose the adjacent information recovery filter to 
recover the missing data from sensors. This filter considers the time 
series adjacency information through a hidden Markov model. Yu-
guang et al. [46] present a method based on a Markov chain model 
and generalized projection non-negative matrix factorization to detect 
and diagnose faults in industrial processes. This method is applicable 
when there are missing data in incomplete measurements since they 
often are correlated with some of the available variables. Aguirre-
Salado et al. [1] analyse the maximum intensity levels of earthquakes 
with incomplete data on the coast of southern Mexico using a random 
censorship approach. They use a flexible semi-parametric Bayesian 
approach, whose parameters are estimated through the Markov chain 
Monte Carlo. In the work of Lupton and Allwood [25], a general 

procedure based on a Bayesian approach is developed for its appli-
cation to material flow analysis. Using Markov Chain Monte Carlo 
simulations, the procedure uses incomplete or missing data to map 
global steel production. Liu et al. [24] apply the delay time theory to 
assess the reliability of a system with sufficient inspection data but 
insufficient failure data. First, they develop an optimization model 
for individual components that minimizes maintenance, failure, and 
downtime costs over the component lifecycle and then extend it to 
multi-component serial systems, applying it to a locomotive. Yamany 
and Abraham [43] develop and validate a non-homogeneous Mark-
ovian pavement performance model that improves on previously pro-
posed probabilistic pavement performance models because it allows 
addressing cases where there are no historical preventative mainte-
nance data.

Finally, one of the most recent works related to our research is 
Zhao et al. [49]. Using a study case from the petrochemical industry, 
they apply a Bayesian framework to update unknown parameters in 
a Wiener degradation model to overcome the practical challenges of 
information sparsity. The latest trend to address the lack of data is to 
use artificial intelligence techniques; see, for example, references [3], 
[14] and [50].

The main objective of this paper is to optimize the periodic preven-
tive maintenance interval of a ship engine exhaust component when 
the available information on the failure mode understudy is minimal. 
For that purpose, the results obtained under two scenarios are com-
pared. In the first scenario A, only information regarding the number 
of failures that have occurred during a period of time is available, 
while for the second scenario B, the hours of operation at which the 
failures have occurred are also available. The active component to be 
analysed presents a failure mode due to the accumulation of combus-
tion residues on the sealing surface and the axis of the second turbo 
actuation bypass valve. The failure in the closure causes the engine 
malfunction, emitting exhaust gases with a high content of polluting 
particles, which forces the equipment to stop for cleaning and replace-
ment, and therefore the cessation of activity and its incomes.

This article uses the Benard’s approximation as an estimator to 
determine the observed failure distribution function [28], However, 
in each scenario, a different method is used to determine the hours 
at which the failures occur. Scenario A proposes a method based on 
the total hours of operation and the number of failures counted. In 
scenario B, the failure hours are taken as problem data. The process 
continues in parallel for the two scenarios by calculating the Weibull 
cumulative distribution [39]. Some authors use other methods to cal-
culate this distribution [4]. In both cases, the curve is fitted, minimiz-
ing the mean square error (MSE) [12]. Once the distribution function 
has been theorized, it is necessary to use a mathematical model that 
simulates the evolution over time of the activity of the element under 
study (the bypass valve). Traditionally, Markov processes have been 
used to represent the evolution over time of industrial components 
[16], since they allow different states of activity to be established (op-
eration, corrective, preventive, etc.) through which the element can go 
through its life cycle. These models are very useful for establishing 
behaviour because they demarcate history from the future and estab-
lish a law of transition probabilities between states. However, these 
models use constant failure rates over time [41]. Carrying out pre-
ventive maintenance tasks on the equipment is justified because they 
present increasing failure rates. It forces the use of semi-Markovian 
type models that preserve the advantages of Markov processes and 
allow the introduction of variable failure rates [22], [42] and [31]. To 
calculate the preventive interval, we use a method developed from a 
semi-Markovian process with three possible states (operational, cor-
rective and preventive), using the direct costs of corrective and pre-
ventive maintenance tasks and other costs associated with changes in 
statements, and the income obtained from the use of the asset [34].

The rest of the document is organized as follows: Section 2 con-
tains the description of the method followed to reach the value of the 
preventive interval. The entire section is divided into five parts. In 
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Section 2.1, the failure data and the administrative information re-
garding the preventive, corrective intervention and operation are se-
lected, particularly for a case of an actual ship engine. In Section 2.2, 
the procedure for determining the failure hours when these are not 
available is applied, and the observed distribution function is calculat-
ed. In Section 2.3, the estimation of the theoretical distribution func-
tions (Weibull functions) is carried out. In Section 2.4, the three-state 
semi-Markovian model that governs the behaviour over time of the 
failure behaviour of the asset under study (bypass valve) is presented. 
In Section 2.5, the method for calculating the average accumulated 
return for each transition between states is shown. In Section 2.6, the 
mathematical formula that provides the value of the preventive inter-
val that optimizes the average accumulated return is shown. Section 3 
presents the results for each scenario of the preventive interval for the 
different transitions. In Section 4, the results obtained are discussed, 
and the method is proposed as a tool to help the maintenance manager 
calculate the preventive interval when the hours of failure of the asset 
are not available. Finally, Section 5 presents the conclusions of this 
work.

2. Material and methods
Due to price, most physical assets do not have a measuring instru-

ment that allows a chronology of the events that happen to them (a 
clock or hour meter). For this reason, Computer-Aided Maintenance 
Management Systems (CAMMS) lack this information. When trying 
to use failure data to make calculations and optimizations, this can be 
an inconvenience or one of the aggravating factors that prevent satis-
factory results [19], [29], [37] and [48]. For the development of this 
article, the failure data will be used together with its failure appear-
ance times, comparing the preventive interval obtained after apply-
ing the methodology with the interval obtained when only the failure 
data without appearance hours are known. A procedure will be used 
to obtain a series of failure hours in scenario A and, on the other hand, 
the Benard’s approximation formula will be used to calculate the ob-
served failure distribution function, which is common to both scenar-
ios. It is then unified for the two scenarios from this point to reach the 
two theoretical distribution functions, Weibull functions [6], one for 
each scenario. From here, a semi-Markovian model is established that 
simulates the evolution in time, accounting for the transitions between 
the states [15]. The model allows one to determine the average accu-
mulated return for each of the transitions. For this, it requires informa-
tion of an administrative nature: costs of maintenance interventions 
and income from the operation of the equipment. This average accu-
mulated return depends on the preventive interval, so it is possible to 
obtain the preventive interval that optimizes the average accumulated 
return. The objective of our work is to compare the size of the optimal 
preventive interval for the two established scenarios and to verify that 
the method followed when we only have the number of failures is a 
method whose results are very close to the results achieved when the 
same number of failures are also used.

This article is based on [34], where other distributions (Exponen-
tial, Log-normal and Normal) have been analysed, concluding that 
the one that best fits the failure times is the Weibull distribution. The 
use of the Weibull distribution for the analysis of failure times is now 
widespread. See [5], [6] and [44]. In the pioneering paper [xx], failure 
data is analysed for the first time. The author determines that the best 
fitting distribution is the exponential distribution. However, this is a 
particular case of the Weibull distribution which, because it has more 
parameters, is capable of covering more general situations. Moreover, 
the exponential distribution, due to its lack of memory, does not allow 
preventive maintenance, only corrective maintenance, which would 
render this article meaningless.

2.1. Real case. Data selection and process information
The physical asset under study is a bypass valve installed in marine 

diesel engines. Its mission is to control the flow of exhaust gases, 
determining the volumetric configuration where they will expand, in 
an initial configuration made up of one turbo or in a second, made up 
of the two turbos. This valve is essential if one wants a quick increase 
in rpm and therefore the power delivered. Its failure produces a sig-
nificant emission of exhaust gases. During a period of 15 months and 
two weeks, valve failure data corresponding to 5 engines have been 
collected. A total of 16 bugs have been recorded, while the total hours 
that the five engines have worked is 26,400 hours. As the patrol boats 
have an hour meter, it has been possible to record the exact times in 
which the failures have occurred. The failure times already ordered 
from lowest to highest are presented in Table 1.

From the information of the maintenance interventions carried out, 
it has been possible to establish that the duration of the corrective re-
pair task to solve the fault has an average of 8 hours, while the average 
of the preventive task carried out to avoid the failure is 5 hours. The 
technical personnel who carry out both interventions have different 
categories, so the cost of the corrective intervention is €95/hour, while 
that of the preventive intervention is €82/hour. The cost borne by the 
customer after the failure occurs is valued at €3,270, while the cost 
borne after deciding to carry out the preventive intervention is €1. The 
costs of spare parts used in both interventions coincide at €360. The 
owner’s income for the use of the equipment is €5/hour.

2.2. Estimation of the observed failure distribution function
The observed failure distribution function is the function that is 

estimated from the collected failure data. To develop it, the Benard’s 
approximation is used as an estimator, ( ) ( )0.3 / 0.4iF i N= − + , 
where i  represents the order of the failure and N  the total number of 
failures (in this case 16) . The failure distribution function observed 
is the same for the two scenarios described, since only the number of 
failures is involved in its calculation. The information available in 
scenario A is the 16 failures in the 26,400 hours and the information 
for scenario B is shown in Table 1. The application of Benard’s ap-
proximation requires establishing an order in the failures. Place the 
youngest bug in order 1 and the oldest bug in order 16. Table 2 shows 
these values.

In order to determine the theoretical distribution function and the 
observed failure distribution function, it is necessary to know the 
number of hours that the asset was operating before the failure oc-
curred. For scenario B, this information is collected in Table 1. How-
ever, this table of values must be constructed for scenario A based on 
the available information. The procedure to follow is as follows.

From the equipment’s total operating hours (26,400 hours), the • 
average occurrence of failures is calculated, 1,650 hours, dividing 
26,400 hours by the 16 failures.
The interval between failures is established, the average appear-• 
ance of failures divided by the number of failures, giving it a value 
of 1650/16 = 104 hours.
The failures occurrence is distributed around the mean, with each • 
failure occurrence increasing or decreasing by the amount of in-
terval between failures.
If the number of failures is even, the two central events (failures • 
8 and 9) are placed, equidistant from the mean separated by the 
interval.

The values obtained are shown in Table 3. In this case, since it is an 
even number of failures, failure 8 corresponds to the value 1.650-52 = 
1.598. Failure 9 corresponds to the value 1.650+52 = 1.702.

2.3. Estimation of the theoretical distribution functions
From the failure data for each scenario, Table 1 and Table 3, and 

the observed failure distribution function data, Table 2, the theoretical 
failure distribution function that best fits must be estimated for each 
scenario for the pair (hours of failure, function observed). In the case 
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of physical assets, it is usually adjusted to the Weibull distribution 
function [5].

Scenario A
We first try to fit the observed function to the two-parameter 

Weibull α β,�( ) , using columns 5 and 4 of Table 4 (columns 1, 3 and 2 
correspond to Table 2 and Table 3). To do this, we represent the points 
of the pair (hours of failure, observed function) in the graph on the left 

of Fig. 1, using the logarithmic scales, ( )( )ln 1 /  1 —  iln F  on the ver-
tical axis and  ilnt  on the horizontal axis. Excel allows you to plot the 
trend line that best fits the points using the method of least squares. 
The form parameter α  of the Weibull function coincides with the 
slope of the trend line, while the scale parameter β  corresponds to 
the negative exponential of the quotient between the ordinate at the 
origin and the slope [34].

Table 1. An ordered list of hours of failures in the valves of the five engines during a 26,400 hour-period. Scenario B

Failure, i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fi 0.0427 0.1037 0.1646 0.2256 0.2866 0.3476 0.4085 0.4695 0.5305 0.5915 0.6524 0.7134 0.7744 0.8354 0.8963 0.9573

Table 2. Values of the observed failure distribution function obtained from Benard's approximation. Scenarios A and B

Failure, i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fi 0.0427 0.1037 0.1646 0.2256 0.2866 0.3476 0.4085 0.4695 0.5305 0.5915 0.6524 0.7134 0.7744 0.8354 0.8963 0.9573

Table 3. List of failure hours built for scenario A.

Failure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hours 870 974 1,078 1,182 1,286 1,390 1,494 1,598 1,702 1,806 1,910 2,014 2,118 2,222 2,32 2,430

Table 4. Data for the construction of the graphs in Fig. 1

Failure Failure hours, ti Observed function, Fi ln ti ln ln (1/(1−Fi (t))) ln(ti−γ)

1 870 0.04268 6.768493 −3.132225 5.799093

2 974 0.10366 6.881411 −2.212435 6.073045

3 1,078 0.16463 6.982863 −1.715435 6.287859

4 1,182 0.22561 7.074963 −1.363831 6.464588

5 1,286 0.28659 7.159292 −1.085620 6.614726

6 1,390 0.34756 7.237059 −0.850883 6.745236

7 1,494 0.40854 7.309212 −0.644061 6.860664

8 1,598 0.46951 7.376508 −0.455772 6.964136

9 1,702 0.53049 7.439559 −0.279633 7.057898

10 1,806 0.59146 7.498870 −0.110737 7.143618

11 1,910 0.65244 7.554859 0.055260 7.222566

12 2,014 0.71341 7.607878 0.222919 7.295735

13 2,118 0.77439 7.658228 0.398070 7.363914

14 2,222 0.83537 7.706163 0.590023 7.427739

15 2,326 0.89634 7.751905 0.818304 7.487734

16 2,430 0.95732 7.795647 1.148658 7.544332

Fig. 1. Graphic representation of failure hours and observed function in logarithmic coordinates. Trend lines and curves. Scenario A
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From the fitted line obtained for the linear trend 
(   3.5706   26.828y x= − ), the values of α = 3 57.  and β =1 832, . How-
ever, the fitted curve of order 2 y x x= − + −( )0 9314 17 177 76 4292. . .  
shows that a guaranteed life γ (location parameter), can exist since the 
coefficient of 2x  is negative, graph on left of Fig. 1. 

To find the value of γ, we must move the origin ( )ti − γ  until the 
coefficient of 2x  is zero. The points of the new pair (failure hours mi-
nus the guaranteed life, observed function) are re-plotted on the graph 
on the right of Fig. 1. The logarithmic scales ln ( )( )ln 1 / 1 — iln F  and  
lnln ( )it γ−  are now used, and the values in columns 5 and 6 of Table 4. 
Values are given to γ until the coefficient of 2x  is zero, and the fitting 
curve becomes a straight line y x x= − + −( )0 0003 2 1824 15 5782. . .
.From this line, the 2.18α =  and 1,266β = , values are obtained, 
which, with the adjusted value for 540γ = , are the three parameters 
of the Weibull function.

Scenario B
In this scenario, we know the times at which the failures occurred, 

Table 1. These data are collected in column 2 of Table 5 and modify 
the values of columns 4 and 6 that vary concerning those of Table 4.

Following the same procedure described for scenario A, the graphs 
in Fig. 2 are constructed from the data in Table 5.

Again values are given to γ until the coefficient of 2x  is zero, and 
the fitting curve is flattened. From this straight line, the values of 

2.12α = .  and 1,028β =  are obtained, which together with the 
adjusted value for 756γ =  constitute the three parameters of the 
Weibull function for scenario B.

2.4. Semi-Markovian model of evolution of the system in 
time

The calculation of the preventive interval of the bypass valve re-
quires developing a mathematical model that reflects the behaviour of 
the asset over time. This model should allow the evolution of the as-
set between three states (operational S1, corrective S2 and preventive 
S3). You can use stochastic discrete or continuous-time processes; 
an introductory class between them is the Markov process [17]. This 
process meets the Markovian property, “the future only depends on the 
present, not the past”. In the discrete-time model (chain of Markov), 
only transitions between states and their probabilities are taken into 
account. The permanence time in each state is not relevant. Due to the 
Markovian property, the permanence time is a random variable with 
exponential distribution in the continuous-time model. However, the 
physical asset object of study presents an increase in the failure rate 
as the operating time increases. This forces one to discard Markovian 
models and opt for semi-Markovian processes. This type of model dif-

Fig. 2. Graphic representation of failure hours and observed function in logarithmic coordinates. Trend lines and curves. Scenario B

Table 5. Data for the construction of the graphs of Fig. 2

Failure Failure hours, ti Observed function, Fi ln ti ln ln F ti1 1/ − ( )( )( ) ln ti( )− γ

1 991 0.04268 6.898715 −3.132225 5.456175

2 1,082 0.10366 6.986566 −2.212435 5.784440

3 1,315 0.16463 7.181592 −1.715435 6.324717

4 1,342 0.22561 7.201916 −1.363831 6.371954

5 1,405 0.28659 7.247793 −1.085620 6.474199

6 1,515 0.34756 7.323171 −0.850883 6.630947

7 1,520 0.40854 7.326466 −0.644061 6.637520

8 1,570 0.46951 7.358831 −0.455772 6.700977

9 1,592 0.53049 7.372746 −0.279633 6.727671

10 1,635 0.59146 7.399398 −0.110737 6.777874

11 1,769 0.65244 7.478170 0.055260 6.919881

12 1,797 0.71341 7.493874 0.222919 6.947168

13 1,837 0.77439 7.515889 0.398070 6.984901

14 2,177 0.83537 7.685703 0.590023 7.258553

15 2,433 0.89634 7.796880 0.818304 7.424285

16 2,536 0.95732 7.838343 1.148658 7.483919
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fers from Markovians in that the time of permanence in each state does 
not follow an exponential distribution [13], which implies that semi-
Markovian models do not meet the Markovian property. However, the 
successive transitions between states form a chain of Markov, called 
the Markov chain embedded in the Semi-Markovian model [8].

The model evolves over time, Fig. 3, accumulating returns (income 
in S1 and costs in S2 and S3) due to the times of permanence in each 
state and transitions between states. To this end, three types of square 
order matrices are developed, the transition probability matrix be-
tween states [ ]P , the matrix of permanence times in each state [ ]Q  
and the matrix of returns by permanence in each state and the transi-
tion to the next [ ]R . In this case, the non-null elements of the matrix 
[ ]P  are 12 13 21 31, ,   p p p y p . The non-null elements of the matrix [ ]Q  
are 12 13 21 31, ,   q q q y q . The non-null elements of the matrix [ ]R  are 

12 13 21 31, ,   r r r y r . 
If the asset fails before reaching the time of the preventive interval 

τ , the asset passes to the corrective state. After a time 21q , the as-
set returns to the operating state. If during the operation, time τ  is 
reached, the asset passes to the preventive state. After a time 31q , the 
asset returns to the operating state.

The element of the matrix [ ]P , 12p , is the probability of fail-
ing the asset before reaching preventive maintenance. It is defined by 
the value that reaches the failure distribution function in time τ . The 
element 13p  is the probability of achieving preventive maintenance. 
It is defined as 121 p− . The elements 21 31  p y p  take value 1 since 
the asset always returns to the operating state after the corrective or 
preventive task.

The 12q  element is the average time that the asset remains opera-
tive before failing. The 13q  element is the average time that the asset 

state before moving on to the preventive state 13 13 1 13  r q R R= ⋅ + . 
It is also composed of two concepts, the income per operating time 

1  Rτ ⋅  and the cost motivated by the activation of the preventive 13R . 
The 21r  element is the average return that demands the asset 
when it remains in a corrective state before moving to the op-
erational state 21 21 2 21  r q R R= ⋅ + . It comprises two concepts, 
the cost per repair time 21 2  q R⋅ . (being 2R  the cost per hour of 
repair). and the cost motivated by activating the operating state 

21R . The element 31r , is the average return demanded by the 
asset when it remains in the preventive state before going to the 
operating state 31 31 3 31  r q R R= ⋅ + . It is also composed of two 
concepts, the cost per time dedicated to the preventive 31 3  q R⋅
. (being 3R  the cost per hour of preventive task) and the cost 
motivated by activating the operating state 31R .

2.5. Calculation of the average accumulated return
When the valve is operating, income is obtained, but when it is 

subjected to corrective tasks after a failure or preventive tasks after a 
certain time operating, expenses occur. The return in each transition is 
a random variable, so we cannot calculate it. However, it is possible to 
calculate the average accumulated return ( )iv m  in m  transitions, 
starting from state i . In the first transition, assuming that we start 
from state S1, the average return in the first transition can be expressed 

as follows ( )
3

1 1 1
1

1  · j j
j

v r p
=

= ∑  . Once the asset is found in the j  (S2 or 

S3) state, you can perform 1m −  transitions and will accumulate re-
turns in all of them. The average accumulated return in those 1m −  
transitions is a random variable, denoted by ( )1jv m − , which can 
take values ( ) ( ) ( )1 2 31 , 1 , 1v m v m v m− − −  with probabilities 

1 2 3, , j j jp p p  that remain constant throughout the 1m −  transitions, 
since the process is homogeneous. Its value can be calculated as: 

( )
3

1
1 · j ij

j
v m p

=
−∑ . The average accumulated return in m transitions can 

be expressed as the sum of the returns of the first transition and the 
remaining 1m −  transitions, according to the expression: 

( ) ( ) ( )
3

1 1
1

1 1  j ij
j

v m v v m p
=

= + − ⋅∑ . Similarly, expressions for ( )2v m  

and ( )3v m  can be calculated [35]. It is a system of difference equa-
tions [36]. This system of equations can be resolved by z-transform 
[11], obtaining the equation Eq. ((1)):

Fig. 3. Description of the transition process between states and the accumulation of re-
turns associated with permanence and transition between states

remains operative before passing to preventive, that is, the preventive 
interval τ . The 21q  element is the average time that the asset remains 
in a corrective state. We give this element the value of the average of 
the distribution function of the repair times, ( )cG t . The 31q  element 
is the average time that the asset remains in a preventive state. We 
consider this value the average distribution function of preventive in-
tervention times, ( )pH t . The value taken by the 12q  element is con-
ditioned that time  τ  is not reached and expressed in the form: 

( ) ( )12
0

1 ·  q t f t dt
F

τ

τ
= ∫ .

The 12r  element is the average return that delivers the asset when 
it remains in an operating state before moving to the corrective state 

12 12 1 12 r q R R= ⋅ + . It is composed of two concepts, the operating time 
income 12 1  q R⋅ . (being 1R  the income per hour of operation) and the 
cost motivated by the appearance of the failure 12R . The 13r  element is 
the average return that delivers the asset when it remains in an operating 

The equation obtained depends on m  and τ , and uses the distribu-
tion functions of failure times ( )F t , repair time ( )cG t  and preven-
tive time ( ) pH t  and their respective density functions ( )f t , ( ))cg t  
and ( )ph t . In the same way, the average accumulated returns are cal-
culated starting from the S2 and S3 states.

2.6. Calculation of the preventive interval
Starting from the equation obtained for ( )1v m , the derivative is 

calculated with respect to τ  and it equals zero ( )( )1 / 0dv m dτ = . 
Then one proceeds to replace the failure distribution function F(t) by 
the Weibull function of three parameters and the other two distribu-
tion functions of time in the corrective and preventive states due to 
its average values [33]. The next step is cleared, the value of the pre-
ventive interval 0τ  that maximizes the average accumulated return, 
( )1v m , for each transition m , obtaining la Eq. (2):

v m m R tf t dt R F R R Fm
1

1
1

0
12 1 13

1
4

2 1 1 1( ) = + + −( )( ) ( ) + ( ) + + − ( )−
∫
τ

τ τ τ( )(( )
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∞
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∞

∫R t h t dt R Fp p p3
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31 1� τ  (1)



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 24, No. 3, 2022570

τ γ
β
α

α
α

0
1 1

12 13

1

1 2 21 21
2 1 1

2 1 1
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− +
− − −( )
+ + −( )

+

−
−

−

R

R R
m

m
R q R
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m −− −( )R q R3 31 31
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This Eq. (2) depends solely on the data of the case to be analysed 
and the transition m .

3. Results
To compare the two scenarios, it is necessary to define the data 

required by Eq. (2). All the data are the same for both scenarios except 
the distribution functions of the failures times. Both functions were 
calculated in section 2.3. For scenario A a Weibull distribution is used 
(2.18, 1,266, 540), a Weibull (2.12, 1,028, 756) is used for Scenario 
B. The other data needed to find the optimal interval are set out in 
Table 6.

The results found for the first ten transitions in scenario A are col-
lected in Fig. 4. The results found for the first ten transitions on Sce-
nario B are collected in Fig. 5.

4. Discussion
At the beginning of the article, the possibility of establishing an ac-

ceptable value for the preventive interval was raised when the asset fail-
ure hours were not available. The only available information focused 
on the number of failures that occur in a certain number of hours of 
operation. In order to make a comparison, two scenarios were estab-

lished. The first scenario, A, describes the proposed problem. A second 
scenario B includes the data corresponding to the asset failure hours 
under study. In both cases, the same failure mode is studied, omitting 
failure times for scenario A which are included for scenario B.

Scenario A proposes a model for the distribution of failure hours, 
while in scenario B, the distribution of failure hours is taken directly 
from the starting data. The procedure followed for both scenarios is 
the same, except for the construction phase of the observed failure 
distribution function. This phase ends similarly for both scenarios, 
applying Benard’s approximation to obtaining the observed failure 
distribution function.

The theoretical distribution functions are obtained; it is a tri-para-
metric Weibull in both scenarios. The semi-Markovian model calcu-
lates the preventive interval that maximizes the average accumulated 
return in the following phase.

Scenario A obtains an optimal preventive interval with a value 
1,592Aτ =  hours, with a medium accumulated return at the end of 10 

transitions of ( )1 10 22,564 €Av = . In scenario B an optimal preventive 
interval is obtained with a value 1,475Bτ =  hours, with an average 

accumulated return at the end of 10 
transitions of ( )1 10 23,913 €Bv = . 
Analysing these results, it is ob-
served that the preventive interval 
in scenario A is only 8% higher than 
the preventive interval in scenario B. 
On the other hand, the average ac-
cumulated return after ten transitions 
decreases by 5.6%, supposing an ex-
cellent approximation. As close if we 
speak in terms of preventive mainte-
nance intervals, these values indicate 
that the procedure used for obtaining 
schedules values of failures allows 
considerably good results to set up 

the value of the preventive interval when we do not have the failure 
times data.

This methodology is applicable 
when failures are uniformly distrib-
uted around the mean operating time 
between failures (MTOBF). The pro-
posed dispersion foresees the exist-
ence of an optimal preventive interval. 
Both values are known to maintenance 
engineers for equipment showing wear 
and tear. For those where the failure 
occurs randomly, the calculation of 
the preventive interval does not make 
sense.

To analyse the effect of the disper-
sion of the data, we can compare the 
results obtained by varying the shape 
parameter of the function Weibull. Ta-
ble 7 shows the relationship between α 
and τ0 if the other parameters and the 
data are held constant.

As expected, for values of α ≥ 2 the 
values of τ0 approach a limit value around 1,500 hours. On the other 
hand, when failures occur randomly, the preventive interval increases 
considerably. These values correspond to this case, if other data are 
used, the results will be different, but there is always a limit value and 
the preventive interval will increase as the randomness of the failures 
increases (decrease α). This is important when only the number of 

Table 6. Data needed to find the preventive interval τ0

Failure Time Distribution Function Distrib. Function Repair 
Times

Distrib. Function Preventive 
Times

Weibull (α, β, γ) Normal (μ1, σ1) Normal (μ2, σ2)

α β γ μ1 μ2

2.18 / 2.12 1,267 / 1,028 540 / 756 8 5

Operational Returns Corrective Returns Preventive Returns

R1 (€/hour) R12 (€) R13 (€) R2 (€/hour) R21 (€) R3 (€/hour) R31 (€)

5.0 −3,270 −1.0 −95.0 −360 −82.0 −360

Fig. 4. Graphic representation and values of the evolution of the preventive interval for home transition. Scenario A

Table 7. Variation of the optimal preventive interval when changing the dispersion of failures (α, shape parameter of the Weibull)

α 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 4.0

τ0 (hour) 2,755 2,012 1,764 1.649 1.587 1,551 1,529 1,516 1,507 1,503 1.502
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failures is available. The maintenance engineer must estimate 
the random component of the failures.

Finally, the results obtained with the method presented in the 
paper have been compared with the utilization of Monte Carlo 
simulation. A dynamic simulation model has been built using 
continuous time stochastic simulation [10]. States, transitions, 
sojourn times and returns have been defined. The variability 
is introduced by three seeds, for the preventive time, for the 
corrective time and for the random number generating failures 
according to the Weibull distribution. Difference equations 
for average accumulated return are used in the model and the 
simulation time step considered is one hour. 200 simulations 
were done per scenario A ( 1,592 hoursτ = ), and scenario B (

1,475 hoursτ = ). A total number of 30,000 hours of simulation 
were considered. The results from this simulation are shown in 
Table 8 and can be compared with the ones presented in the last 
column from the analytical method.

In Fig. 6, a graph containing the sensitivity results for sce-
nario A is presented. The selected variable is returned after 10 
transitions, and the confidence bounds illustrate the percentile 
values for the total 200 simulations over the time horizon simu-
lated (30,000 hrs). The mean value plot is included in red (end-
ing in 22,564, as presented in Table 8).

5. Conclusions
The study’s objective presented in this article is to develop a proce-

dure to find the preventive interval that optimizes the returns obtained 
by the operation and maintenance of an asset. This method has been 
designed to be applied when the time values for when such failures 
occur are unknown. This is very typical of those assets that do not 
have an instrument that measures the operating hours of the asset. The 
only requirement is to know the number of failures that have occurred 
during a period of time.

The procedure requires the establishment of a distribution of pos-
sible failure hours and, on the other hand, determining the observed 
failure distribution function using Bernard’s approximation and 
theoretical distribution functions. A semi-Markovian model, which 
evolves over time through transitions between three states, is then 

used to compute the average accumu-
lated return. From there, the preven-
tive interval that maximizes the aver-
age accumulated return is calculated.

To verify that the procedure fol-
lowed to establish the distribution of 
the failure hours is correct, the same 
procedure has been applied to a sec-
ond scenario where the failure hours 
are known. The result has been very 
similar, which validates this proce-
dure as a method to reach the preven-
tive interval when the hours of failure 
of the assets are not available.

The calculation of the preventive 
interval for maintenance managers is 
a task that is often not carried out, and 
the value imposed by the manufac-
turer is trusted, even if the operating 

and maintenance conditions differ from those of design, even more 
so in the case where data on failure hours is not even available. The 
described procedure is easy to apply and within reach of any mainte-
nance manager due to its low mathematical complexity and its rapid 
execution. This procedure can become a tool to help asset manage-
ment.
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Fig. 5. Graphic representation and values of the evolution of the preventive interval for each transition. Scenario B

Table 8. Monte Carlo simulation. Returns values v1 (10) for scenarios A and B

Variable Count Min Max Mean Median StDev Analytical 
Method

Returs for m=10

Scenario A, τ=1,592 200 3,246 39,069 22,564 22,677 7.696 22,564

Scenario B, τ=1,475 200 8,318 33,999 23,913 24,124 5.758 23,913

Fig. 6. Sample sensitivity results for the scenario A. Confidence bounds in colours and 
mean value plot in red



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 24, No. 3, 2022572

REFERENCES
1.  Aguirre-Salado A I, Vaquera-Huerta H, Aguirre-Salado C A et al. Facing missing observations in data-A new approach for estimating 

strength of earthquakes on the Pacific coast of southern Mexico using random censoring. Applied Sciences (Switzerland) 2019; 9(14): 1–14, 
https://doi.org/10.3390/app9142863.

2.  Ait Allal A, Mansouri K, El Had K, Youssfi M. World Class Ship Maintenance and Reliability for a Sustainable Shipping Industry 
Competitiveness. In Kacprzyk J, Balas VE, Ezziyyani M (eds): Advanced Intelligent Systems for Sustainable Development (AI2SD’2020), 
Cham, Springer International Publishing: 2022: 1–10.

3.  Amruthnath N, Gupta T. Fault class prediction in unsupervised learning using model-based clustering approach. 2018 International 
Conference on Information and Computer Technologies, ICICT 2018., IEEE: 2018: 5–12, https://doi.org/10.1109/INFOCT.2018.8356831.

4.  Andrzejczak K, Bukowski L. A method for estimating the probability distribution of the lifetime for new technical equipment based on expert 
judgement. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23(4): 757–769, https://doi.org/10.17531/ein.2021.4.18.

5.  Assis E M, Figueirôa Filho C L S, Lima G C et al. Comparison between maintenance policies based on q-Weibull and Weibull models. 
International Journal of Quality and Reliability Management 2022; 39(1): 258–279, https://doi.org/10.1108/IJQRM-09-2019-0283.

6.  Aydi W, Alduais F S. Estimating weibull parameters using least squares and multilayer perceptron vs. bayes estimation. Computers, Materials 
and Continua 2022; 71(2): 4033–4050, https://doi.org/10.32604/cmc.2022.023119.

7.  Bajic B, Rikalovic A, Suzic N, Piuri V. Industry 4.0 Implementation Challenges and Opportunities: A Managerial Perspective. IEEE Systems 
Journal 2021; 15(1): 546–559, https://doi.org/10.1109/JSYST.2020.3023041.

8.  Chen Y, Liu Y, Jiang T. Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed 
maintenance time. Reliability Engineering and System Safety 2021; 211(February): 107576, https://doi.org/10.1016/j.ress.2021.107576.

9.  Crespo Márquez A. Benefits of Digital Transformation for Maintenance Management Systems. Market Trends. In Crespo Márquez A (ed): 
Digital Maintenance Management. Guiding Digital Transformation in Maintenance, Cham, Springer International Publishing: 2022: 3–11, 
https://doi.org/10.1007/978-3-030-97660-6_1.

10.  Crespo Márquez A. Dynamic modelling for supply chain management: Dealing with front-end, back-end and integration issues. Springer 
London: 2010. doi:10.1007/978-1-84882-681-6, https://doi.org/10.1007/978-1-84882-681-6.

11.  Cui Z, Lee C, Liu Y. Single-transform formulas for pricing Asian options in a general approximation framework under Markov processes. 
European Journal of Operational Research 2018; 266(3): 1134–1139, https://doi.org/10.1016/j.ejor.2017.10.049.

12.  Deviren Saygin S, Erpul G. Modeling aggregate size distribution of eroded sediment resulting from rain-splash and raindrop impacted flow 
processes. International Journal of Sediment Research 2019; 34(2): 166–177, https://doi.org/10.1016/j.ijsrc.2018.10.004.

13.  Dhawalikar M N, Mariappan V, Srividhya P K, Kurtikar V. Multi-state failure phenomenon and analysis using semi-Markov model. 
International Journal of Quality and Reliability Management 2018; 35(9): 2080–2091, https://doi.org/10.1108/IJQRM-01-2016-0001.

14.  Fernandes M, Corchado J M, Marreiros G. Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the 
context of real industrial manufacturing use-cases: a systematic literature review. Applied Intelligence 2022. doi:10.1007/s10489-022-
03344-3, https://doi.org/10.1007/s10489-022-03344-3.

15.  Girtler J, Rudnicki J. The matter of decision-making control over operation processes of marine power plant systems with the use of their 
models in the form of semi-markov decision-making processes. Polish Maritime Research 2021; 28(1): 116–126, https://doi.org/10.2478/
pomr-2021-0011.

16.  Hu J, Shen J, Shen L. Periodic preventive maintenance planning for systems working under a Markovian operating condition. Computers 
and Industrial Engineering 2020; 142: 106291, https://doi.org/10.1016/j.cie.2020.106291.

17.  Hu J, Xu A, Li B, Liao H. Condition-based maintenance planning for multi-state systems under time-varying environmental conditions. 
Computers and Industrial Engineering 2021. doi:10.1016/j.cie.2021.107380, https://doi.org/10.1016/j.cie.2021.107380.

18.  International Maritime Organization (IMO). Fourth IMO Greenhouse Gas Study 2020. London, 2021.
19.  Jing H, Yao P, Song L et al. Analysis on optimization decision of pavement maintenance mode based on analytic hierarchy process. DYNA 

2021; 96(6): 605–611, https://doi.org/10.6036/10332.
20.  Khan M M, Tse P W, Trappey A J C. Development of a novel methodology for remaining useful life prediction of industrial slurry pumps in 

the absence of run to failure data. Sensors 2021; 21(24): 22, https://doi.org/10.3390/s21248420.
21.  Kim D, Lee S, Kim D. An applicable predictive maintenance framework for the absence of run-to-failure data. Applied Sciences (Switzerland) 

2021; 11(5180): 17, https://doi.org/10.3390/app11115180.
22.  Kumar G, Varghese J P. Optimum preventive maintenance policy for a mechanical system using Semi-Markov method and Golden section 

technique. 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bangkok, 2018: 232–236, 
https://doi.org/10.1109/IEEM.2018.8607343.

23.  Li D, Zhou Y, Hu G, Spanos C J. Handling Incomplete Sensor Measurements in Fault Detection and Diagnosis for Building HVAC Systems. 
IEEE Transactions on Automation Science and Engineering 2020; 17(2): 833–846, https://doi.org/10.1109/TASE.2019.2948101.

24.  Liu G, Chen S, Jin H, Liu S. Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance. 
Reliability Engineering and System Safety 2021; 213: 107668, https://doi.org/10.1016/j.ress.2021.107668.

25.  Lupton R C, Allwood J M. Incremental Material Flow Analysis with Bayesian Inference. Journal of Industrial Ecology 2018; 22(6): 1352–
1364, https://doi.org/10.1111/jiec.12698.

26.  Ma Y F, Jia X, Hu Q et al. A New State Recognition and Prognosis Method Based on a Sparse Representation Feature and the Hidden Semi-
Markov Model. IEEE Access 2020; 8: 119405–119420, https://doi.org/10.1109/ACCESS.2020.3005165.

27.  Nobakhti A, Raissi S, Khalili K, Soltani R. Dynamic reliability assessment of a complex recovery system using fault tree, fuzzy inference 
and discrete event simulation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23(4): 593–604, https://doi.org/doi.
org/10.17531/ein.2021.4.1.

28.  Oh G. Fatigue fracture and probabilistic assessments of a cone and pipe welded structure of stainless steels. Fatigue and Fracture of 
Engineering Materials and Structures 2022; 45(1): 40–54, https://doi.org/10.1111/ffe.13581.

29.  Parra C, Viveros P, Kristjanpoller F et al. Audit and diagnosis in asset management and maintenance applied in the electrical industry. DYNA 
2021; 96(3): 238, https://doi.org/10.6036/10037.

30.  Pech M, Vrchota J, Bednář J. Predictive maintenance and intelligent sensors in smart factory: Review. Sensors 2021; 21(4): 1–39, https://doi.



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 24, No. 3, 2022 573

org/10.3390/s21041470.
31.  Qi W, Park J H, Cheng J, Kao Y. Robust stabilisation for non-linear time-delay semi-Markovian jump systems via sliding mode control. IET 

Control Theory and Applications 2017; 11(10): 1504–1513, https://doi.org/10.1049/iet-cta.2016.1465.
32.  Sahal R, Breslin J G, Ali M I. Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance 

use case. Journal of Manufacturing Systems 2020; 54: 138–151, https://doi.org/10.1016/J.JMSY.2019.11.004.
33.  Sánchez-Herguedas A, Crespo-Márquez A, Rodrigo-Muñoz F. Optimising the preventive maintenance interval using a Semi-Markov 

process, z-transform, and finite planning horizon. In González-Prida V, Márquez CAP, Márquez AC (eds): Cases on Optimizing the Asset 
Management Process, 2022nd edition. Hershey, PA, IGI Global: 2022: 137–161, https://doi.org/10.4018/978-1-7998-7943-5.ch006.

34.  Sánchez-Herguedas A, Mena-Nieto A, Rodrigo-Muñoz F. A new analytical method to optimise the preventive maintenance interval by using 
a Semi-Markov process and z-transform with an application to marine diesel engines. Reliability Engineering and System Safety 2021; 
207(March 2021): 1–15, https://doi.org/10.1016/j.ress.2020.107394.

35.  Sánchez-Herguedas A, Mena-Nieto A, Rodrigo-Muñoz F et al. Optimisation of maintenance policies based on right-censored failure data 
using a semi-Markovian approach. Sensors 2022; 22(4)(1432): 1–18, https://doi.org/10.3390/s22041432.

36.  Sánchez Herguedas A, Crespo Márquez A, Rodrigo Muñoz F. Optimizing preventive maintenance over a finite planning horizon in a semi-
Markov framework. IMA Journal of Management Mathematics 2022; 33(1): 75–99, https://doi.org/10.1093/imaman/dpaa026.

37.  Sgarbossa F, Zennaro I, Florian E, Calzavara M. Age replacement policy in the case of no data: the effect of Weibull parameter estimation. 
International Journal of Production Research 2020; 58(19): 5851–5869, https://doi.org/10.1080/00207543.2019.1660824.

38.  Silvestri L, Forcina A, Introna V et al. Maintenance transformation through Industry 4.0 technologies: A systematic literature review. 
Computers in Industry 2020; 123: 103335, https://doi.org/10.1016/J.COMPIND.2020.103335.

39.  Sukkiramathi K, Rajkumar R, Seshaiah C V. Mathematical representation to assess the wind resource by three parameter Weibull distribution. 
Wind and Structures 2020; 31(5): 419–430, https://doi.org/10.12989/WAS.2020.31.5.419.

40.  Valis D, Forbelská M, Vintr Z. Forecasting study of mains reliability based on sparse field data and perspective state space models. 
Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22(2): 179–191, https://doi.org/10.17531/EIN.2020.2.1.

41.  Wu B, Cui L. Reliability analysis of periodically inspected systems with competing risks under Markovian environments. Computers and 
Industrial Engineering 2021; 158(May 2020): 107415, https://doi.org/10.1016/j.cie.2021.107415.

42.  Wu B, Maya B I G, Limnios N. Using Semi-Markov Chains to solve Semi-Markov Processes. Methodology and Computing in Applied 
Probability 2021; 23(4): 1419–1431, https://doi.org/10.1007/s11009-020-09820-y.

43.  Yamany M S, Abraham D M. Hybrid Approach to Incorporate Preventive Maintenance Effectiveness into Probabilistic Pavement Performance 
Models. Journal of Transportation Engineering, Part B: Pavements 2021; 147(1): 4020077, https://doi.org/10.1061/JPEODX.0000227.

44.  Yang C W, Jiang S J. Weibull statistical analysis of strength fluctuation for failure prediction and structural durability of friction stirwelded 
Al-Cu dissimilar joints correlated to metallurgical bonded characteristics. Materials 2019; 12(205): 1–17, https://doi.org/10.3390/
ma12020205.

45.  Yang L, Zhao Y, Peng R, Ma X. Hybrid preventive maintenance of competing failures under random environment. Reliability Engineering 
& System Safety 2018; 174: 130–140, https://doi.org/10.1016/J.RESS.2018.02.017.

46.  Yuguang N, Shilin W, Ming D. A Combined Markov Chain Model and Generalized Projection Nonnegative Matrix Factorization Approach 
for Fault Diagnosis. Mathematical Problems in Engineering 2017; 2017(7067025): 7, https://doi.org/10.1155/2017/7067025.

47.  Zhang X, Li Q, Cropsey K et al. A multiple imputation method for incomplete correlated ordinal data using multivariate probit models. 
Communications in Statistics: Simulation and Computation 2017; 46(3): 2360–2375, https://doi.org/10.1080/03610918.2015.1043388.

48.  Zhang Y, Qin Y, Du Y ping et al. Railway vehicle bearings risk monitoring based on normal region estimation for no-fault data situations. 
Journal of Transportation Safety and Security 2021; 13(10): 1047–1065, https://doi.org/10.1080/19439962.2019.1616020.

49.  Zhao X, Liang Z, Parlikad A K, Xie M. Performance-oriented risk evaluation and maintenance for multi-asset systems: A Bayesian perspective. 
IISE Transactions 2021; 54(3): 251–270, https://doi.org/10.1080/24725854.2020.1869871.

50.  Zschech P, Heinrich K, Bink R, Neufeld J S. Prognostic Model Development with Missing Labels: A Condition-Based Maintenance 
Approach Using Machine Learning. Business and Information Systems Engineering 2019; 61(3): 327–343, https://doi.org/10.1007/s12599-
019-00596-1.


